100V 中压线性大电流 LED 驱动

概述

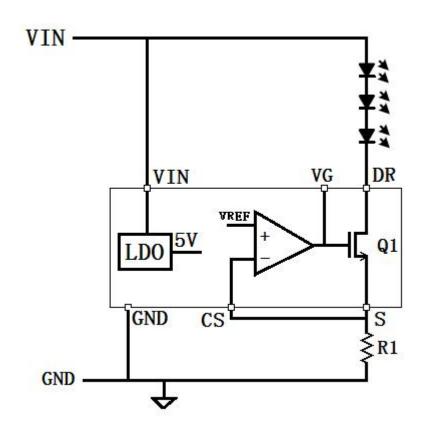
EG1062A 是一款高耐压线性大电流 LED 驱动芯片,适合于 5~100V 电压范围的 LED 驱动。 仅需外接一个 CS 电阻就可以构成一个完整的恒流驱动电路。

EG1062A内置5A60V的功率MOS,最大应用电流1A;采用低压差驱动电路,电流1A时,压降仅为0.8V。

EG1062A内置过温保护,当温度达到130℃时,减小输出电流,高温不闪烁。

EG1062A外围可扩展恒流应用,输入电压高时降低输出电流。也可扩展PWM应用。

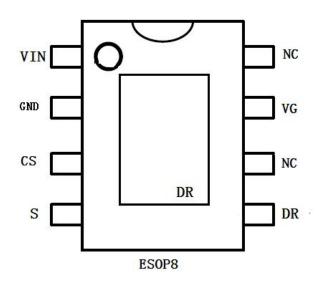
采用ESOP8封装。


特点

外围元件简单 可扩展PWM调光应用 内置大电流功率MOS 最大输出电流1A 采用ESOP8封装

应用领域

电动车灯、手电筒、太阳能、LED台灯、LED矿灯、充电投光灯、及其他DC类LED灯。


典型应用

订购信息

型号	封装	丝印	包装形式
EG1062A	ESOP8	YYWW	编带 4000/盘

芯片脚位

脚位说明

1	VIN	芯片电源
2	GND	芯片电源
3	CS	芯片电流检测
4	S	内部功率管的S端
5	DR	LED恒流驱动端口
7	VG	内部GATE, 一般悬空
6/8	NC	NC
底盘	DR	LED恒流驱动端口

极限参数

似似多数				
符号	参数描述	最小值	最大值	单位
VIN_MAX	VDD最大电压	-0.3	100	V
CS、DIM_MAX	CS最大电压	-0.3	6	V
DR_MAX	DR引脚	-0.3	100	V
Pesop8	最大功耗		3	W
TA	工作温度	-20	150	$^{\circ}$ C
TSTG	存储温度	-40	150	$^{\circ}$
ESD	人体静电模式		2000	V

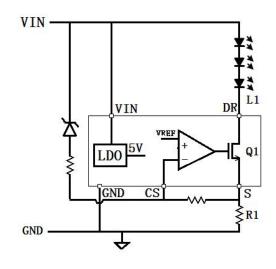
注:①最大极限值是指在实际应用中超出该范围,将极有可能对芯片造成永久性损坏。以上极限应用表示出了芯片可承受的应力值,但并不建议芯片在此极限条件或超出推荐工作条件下工作。芯片长时间处于最大额定工作条件,将影响芯片的可靠性。

②人体模型, 100pF 电容通过 1.5K 电阻放电。

电气参数 (VIN=12V, T=25℃)

符号	参数	条件	典型值	单位
电压部分				
OP_VDD	工作电压		5-100	V
I_VDD	工作电流	VIN=12V	180	uA
电流检测				

VREF_CS	基准电压	Io=500mA	300	mV	
ΔΙο	电流精度	Io=500mA	4%		
1062E驱动	1062E驱动				
Vbv_MOS	MOS耐压		100	V	
Rds_ON	导通阻抗		600	mΩ	
Iout	输出电流		1	A	
过温保护					
Treg	过温调节点		130	$^{\circ}$ C	


应用说明

供电/启动

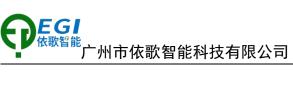
上电时通过VIN脚给芯片供电,输入电压大于5V时,芯片开始工作。输出电流为Io=0.3V÷Rcs。

高压降电流应用(过压保护)

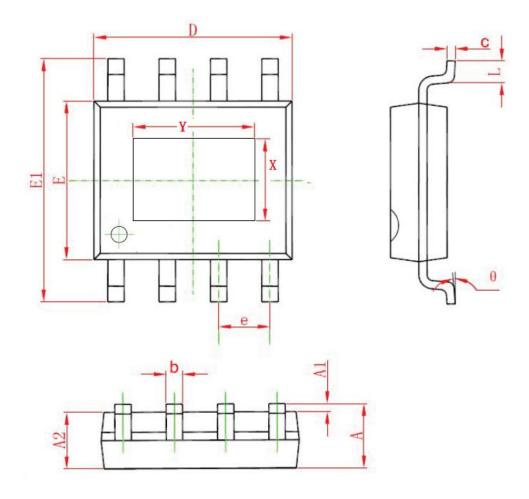
当输入电压超过输出电压太多时,芯片发热增加,可通过外接元件实现降低电流。

防反接应用

输入电源正负反接时芯片会烧坏,可在芯片VIN端口串联电阻,限制反接时电流,防止烧坏。12V应用建议1K Ω \sim 5K Ω , 24V应用建议4.7 \sim 10K Ω 。也可在输入端串联二极管的方式防反接,电流较大时需选用足量功耗余量的肖特基二极管。


过温电流调节

当芯片温度达到130℃时,降低输出电流。温度越高,输出电流越小,高温无闪烁。


PCB设计指导

ESOP8封装底部焊盘,必须紧贴铝基板,并增加散热措施。没贴好可能直接导致芯片烧坏。

大电流的走线尽量加大,特别是SOURCE 引脚及输入输出线。

封装信息 ESOP8

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.350	1.750	0.053	0.069
A1	0.050	0.250	0.002	0.010
A2	1.250	1.650	0.049	0.065
b	0.310	0.510	0.012	0.020
С	0.170	0.250	0.006	0.010
D	4.700	5.150	0.185	0.203
E	3.800	4.000	0.15	0.157
E1	5.800	6.200	0.228	0.244
е	1.270 (BSC)		0.05 (BSC)	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°
Х	2.313	2.513	0.091	0.099
Y	3.202	3.402	0.126	0.134